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We report anomalous behavior in the energy dispersion of a three-electron double-quantum-dot hybrid qubit
and argue that it is caused by atomic-scale disorder at the quantum-well interface. By employing tight-binding
simulations, we identify potential disorder profiles that induce behavior consistent with the experiments. The
results indicate that disorder can give rise to “sweet spots” where the decoherence caused by charge noise is
suppressed, even in a parameter regime where true sweet spots are unexpected. Conversely, “hot spots” where
the decoherence is enhanced can also occur. Our results suggest that interfacial atomic structure can be used in
particular cases as a tool to enhance the fidelity of Si double-dot qubits.
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I. INTRODUCTION

Group IV materials are promising hosts for spin qubits
[1-3] due to the predominance of nuclear spin-O isotopes
[4], and the consequent abatement of magnetic noise. Elec-
trical (“‘charge”) noise remains a problem, however, and it is
ubiquitous across materials platforms [5,6]. Charge noise has
been shown to affect quantum-double-dot qubits, principally
through the detuning control parameter [7], resulting in de-
phasing that depends on the energy dispersion as a function of
detuning [8]. For Si dots, this dispersion is strongly affected
by the physics of the conduction band minima, or “valleys”
[9,10]. Notably, atomic-scale disorder at the quantum-well
interface affects the valley-orbit coupling and the tunnel cou-
pling between dots [9,11-20], and thus the qubit frequency.

Here we show that random, atomic-scale disorder at the
quantum-well interface, combined with the ability to electro-
statically manipulate the dot positions, enables us to exploit
sweet spots in the energy dispersion, where the effects of
charge noise are strongly suppressed [21-29]. Sweet spots
occur when the derivative of the qubit frequency with respect
to the detuning parameter vanishes, dfp/de = 0, since in
this case, small ¢ fluctuations do not cause variations of fy.
We report experimental evidence for a sweet spot occurring
in an unexpected regime of control space, as well as the
converse effect where decoherence is strongly enhanced by
a hot spot [30]. We also provide potential explanations for
these phenomena in the form of specific disorder profiles
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that generate similar energy dispersions in two-dimensional
(2D) tight-binding simulations of a double-quantum dot in a
SiGe/Si/SiGe quantum well.

We focus on a specific qubit implementation, the quantum-
dot hybrid qubit [31-40], which behaves as a charge qubit
when the detuning is close to zero, and has a spinlike character
for large detuning values & >> 0. The double-dot device used
in this work was grown on a step-graded SiGe virtual substrate
that was miscut 2° towards (010) [41], with the gate structure
shown in Fig. 1(a). Details about the device and its operation
are presented in Refs. [33,42,43].

Here we employ four different pulse sequences to deter-
mine the qubit energy dispersion, as illustrated in Fig. 1(b) and
discussed in Appendix A. The three-step Ramsey sequence
is useful for mapping out the energy dispersion Afy over a
wide range of ¢, yielding the results shown with black dots in
Fig. 1(c). This energy dispersion can be understood with the
following three-level, hybrid qubit Hamiltonian:

8/2 Al Az
Heygr = | A1 —¢/2 0 , (D
Ay 0 —g/2+Ag

where the first basis state |£y) has a singletlike (2,1) charge
configuration (two electrons in the left dot and one in the
right), and the other two basis states |Ry) and |R) have sin-
gletlike and tripletlike (1,2) charge configurations [31]. Here
Ay and A, refer to the tunnel couplings between disparate
charge states, and Ag is the energy splitting between the
two (1,2) basis states, as indicated in Fig. 1(d). The lowest
two eigenstates of Hg correspond to the qubit levels |0) and
[1), while the third state is an excited leakage level |£), as
indicated in the inset of Fig. 1(c). Fitting the experimental
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FIG. 1. Experimental and theoretical setup, and resulting energy
dispersions. (a) A scanning electron microscope image of a device
nominally identical to the one used in the experiment. The gate
voltages are tuned to form two quantum dots, located approximately
within the dashed circles, where red dots represent electrons in a (1,2)
charge configuration. (b) Schematics of the four pulse sequences
employed in the experiments. The three-step sequence is used to
obtain the qubit frequency data fy plotted in (c). The Ramsey pulse
sequence is used to obtain the qubit frequencies and Ramsey decay
rates plotted in Fig. 2. The Rabi and Larmor sequences are used
to obtain Rabi fringes and f, in Fig. 3. (c) The experimentally
measured fj of a quantum-dot hybrid qubit as a function of detuning
¢ (black dots). The solid red line shows the results of a least-squares
fit of the data to the Hamiltonian [Eq. (1)] assuming e-independent
model parameters. Inset: The three energy eigenstates obtained by
diagonalizing Eq. (1). (d) A schematic cartoon illustrating the theo-
retical model for both the quantum-dot hybrid qubit and the single-
electron charge qubit, with the low-energy basis states |L), |Ro),
and |R,), as appropriate for the hybrid qubit. In our 2D tight-binding
simulations, atomic-scale step disorder is introduced into the top
interface as shown here and described in Appendix B. The lateral
confinement potential is taken to be biquadratic, and the two dots are
offset by energy ¢. The interdot tunnel couplings are labeled A, and
A,, and we refer to Ay as the “valley splitting,” although |R;) may
involve a valley-orbit excitation.

data to Eq. (1) yields the solid red line in the main panel, with
(constant) fitting parameters A; = 3.75 GHz, A, = 8.1 GHz,
and A = 12.25 GHz. The fit is quite good; however, Eq. (1)
is a simple approximation, and deviations from this simple
description can lead to significant, observable effects that are
the focus of this paper.

II. EXPERIMENTAL RESULTS

Figures 2(a) and 2(b) shows measurements of the dephas-
ing rate I'; as a function of detuning. Here, since we study
a small detuning range with a high density of measurement
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FIG. 2. Experimental and theoretical analyses of normal (i.e.,
smooth) hybrid-qubit energy dispersions (left-hand column) vs hot-
spot dispersions (right-hand column). (a) and (b) Ramsey decay rates
I'; obtained as in Ref. [43]. (c) and (d) Experimental measurements
of fy (black dots), plotted on the same horizontal axis as I';. The
red dots are obtained by integrating the data in (a) and (b) with
respect to &, as described in Appendix A; the good agreement
between black and red data, in both panels, shows that Eq. (2) is
well satisfied, as expected when ¢ fluctuations are the dominant
decoherence mechanism. The error bars in (a)—(d) are also discussed
in Appendix A. We note that the maximum slope in (d) is well
correlated with the peak of I'; in (b) (dashed line). (e) and (f)
fo, obtained from simulations, using the disorder profiles shown in
(i) and (j). Note that the magnitudes of f,, differ slightly between
experiments and simulations, but their relative variations are very
similar. (g) and (h) Centers of mass (y) for the ground (excited)
qubit states, shown in blue (red). (i) and (j) Lateral profiles of (1)
the step disorder at the top quantum-well interface (black lines), (2)
the double-dot confinement potential (red-dotted lines), and (3) the
resulting charge density of the qubit ground state (heavy-blue lines).
2D plots of the ground-state probability density are also shown, with
horizontal stripes corresponding to fast valley oscillations. For the
simulations, z = 0 corresponds to the bottom quantum-well inter-
face. Additional model parameters include o, = 4.39 ueV; (e), (g),
and (i) yg, = £48.17nm, F = 1.2MV/m, hw = 0.46 meV; (f),
(h), and (j) yg.. = £67.85nm, F = 1.63MV/m, hiw = 0.38 meV;
(1) e =360 neV; (j) e = 210 ueV. (See Appendix B for an explana-
tion of the various parameters.)

points, it is convenient to use the conventional Ramsey se-
quence shown in Fig. 1(b), to avoid the reloading of long
timing sequences to the arbitrary waveform generator (AWG)
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that would be required for the three-step sequence. In Fig. 2
we report the dephasing rate for two tunings of the dou-
ble dot that are different from each other and from that in
Fig. 1(c). “Tuning” here means a set of device gate voltages
that determine A;, A,, and Ag. The tuning for Fig. 2(a)
shows little structure in I'; as a function of ¢, whereas that
for Fig. 2(b) reveals a large peak in this dephasing rate.
Figures 2(c) and 2(d) show corresponding measurements of
the qubit frequency fy at these tunings, obtained using a
conventional Ramsey pulse sequence, as illustrated on the
second line of Fig. 1(b). While f, is a smooth function
of ¢ in Fig. 2(c), there is a step with high slope in fj
near ¢ = 215 ueV in Fig. 2(d) at the same location as the
peak in I'; in Fig. 2(b) (see black dashed line). Such a step
clearly is inconsistent with Eq. (1) for detuning-independent
Hamiltonian parameters, and its coincidence with the peak in
I'; is striking.

For solid-state qubits, charge noise is often the dominant
decoherence mechanism [21-28]. In Ramsey measurements,
the qubit phase evolves at a rate proportional to the qubit
frequency fp, and the dephasing arising from charge noise
obeys the relation [7,8]

I} = /2713fp/0¢o%, )

where the standard deviation of the quasistatic charge noise o,
should be a constant for a given device, at a given temperature.
Using this equation, we can integrate the I'; data points in
Figs. 2(a) and 2(b), as described in Appendix A, and compare
the results to the measured fj in Figs. 2(c) and 2(d), as shown
by the red dots. The correspondence between the integrated
dephasing rate and f is remarkable, indicating that the step
in fp in Fig. 2(d) indeed is converted by charge noise into a
peak in the dephasing rate at that value of €.

Figure 3 shows that atomic structure at the quantum-well
interface can also have a strong effect on Rabi oscillations.
Here the data were obtained at a fixed driving frequency,
corresponding to the qubit resonance condition near & =
225 eV, and at a fourth overall tuning of the quantum device.
To determine the energy dispersion for a range of detunings
about this value, we employ the Larmor pulse sequence shown
in Fig. 1(b), yielding the results shown in Fig. 3(b). (Note
that the Larmor sequence can be loaded relatively quickly
into the AWG, making it convenient to use. However, it
is only effective when the interdot tunnel rates are in an
intermediate range consistent with Landau-Zener-Stiickelberg
(LZS) methods [44,45].) In this case, the dispersion exhibits
a maximum and a roughly 10 ueV wide plateau (a sweet
spot) near ¢ = 225 pueV, with sharp changes in the dispersion
occurring on either side. The long-lived Rabi oscillations near
the dispersion plateau yield a decay rate of I'rap; = 5.4 MHz,
with much higher decay rates on either side of the plateau.
The dispersion-induced enhancement of the coherence time at
this specific value of the detuning is also remarkable.

III. THEORETICAL ANALYSIS

For qubit gate operations, behavior like Fig. 2(a) is clearly
preferable to Fig. 2(b), and a sweet spot like Fig. 3(b)
would be optimal. However, these different phenomena are
not directly explained by Eq. (1) with conventional, constant
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FIG. 3. Experimental and theoretical analysis of a sweet-spot
energy dispersion. (a) Rabi fringes featuring an extended coherence
region. Here P; is the probability of being in state [1), and #rr is
the duration of the microwave pulse. (b) Experimental measurement
of fp, based on a Larmor pulse sequence. Here the sweet spot
occurs at the plateau near ¢ = 225 ueV, and the red dashed line
indicates the driving frequency used in (a). (c) Qubit frequency fo,
obtained from simulations, using the disorder profile shown in (g).
(d) The center of mass difference between the qubit states, defined as
A(y) = (¥)1 — (¥)o, plotted on the same horizontal axis as (b) and
(c). (e) and (f) The valley-splitting energy parameter Ag, and tunnel
couplings A; and A,, obtained from simulations. (See Appendix B.)
(g) Lateral profiles of (1) the interfacial disorder (black line), and
(2) the double-dot confinement potential (red-dotted line). A 2D
plot of the ground-state probability density is also shown (see color
bars). Simulation parameters are (¢)—(g) yg.. = £67.85nm, F =
1.27MV/m, ho = 0.42meV; (g) € = 225 ueV. (See Appendix B
for explanation.)

parameters Aj, A;, and Ag. We now argue that the unex-
pected behavior observed in the qubit energy dispersions can
be explained by the presence of atomic-scale disorder at the
upper quantum-well interface, which modifies the Hamilto-
nian model parameters due to interference between the Si
conduction valleys [9,11-14,16-20]. To test this hypothesis
theoretically, we consider a double-dot confinement potential
for a single electron, as illustrated in Fig. 1(d). Ignoring the
excited state of the left dot, as appropriate when ¢ > 0, the
system can be described by the same three-level Hamiltonian
as the quantum-dot hybrid qubit [46] by replacing the three-
electron basis with a one-electron basis comprised of a (1,0)
charge configuration |Ly) and two (0,1) charge configurations
|Ro) and |R;). The tunnel couplings A; and A, have the
same meaning as before, while Ay corresponds to the low-
energy splitting of the right dot, which could reflect a valley
excitation, an orbital excitation, or a combination [13].

For a quantum-dot hybrid qubit, Ay also includes ex-
change and Coulomb terms; otherwise, the mapping between
hybrid and charge qubits is exact. While the exchange and

165438-3



J. C. ABADILLO-URIEL et al.

PHYSICAL REVIEW B 98, 165438 (2018)

Coulomb terms are certainly important for the three-electron
physics, they are not expected to depend directly on ¢ and can
only be affected by second order contributions to the energy,
caused by valley-orbit effects. Thus, a single-electron picture
accounts for the dominant detuning dependence.

We simulate the effects of disorder in a single-electron
double dot by constructing a minimal tight-binding model
that captures the relevant valley physics. As described in
Appendix B, the Hamiltonian comprises terms describing the
vertical quantum-well confinement (including atomic-scale
disorder), the lateral double-dot confinement, the vertical
electric field, and a lateral field representing the detuning. The
simulations assume Hamiltonian parameters consistent with
the experiments. In all cases, we consider a quantum well of
width 9.85 nm and we focus on the ubiquitous atomic-step
disorder arising from the underlying miscut of the substrate
wafer, or from strain relaxation in the SiGe virtual substrate.
Our results indicate that simple disorder profiles (e.g., single
steps) are unable to explain the range of behaviors observed in
the experiments. Moreover, we find that the effect of a given
profile on the energy dispersion can be difficult to predict, a
priori. We have therefore performed a large number (>3000)
of simulations incorporating randomly generated step profiles,
such as those shown in Figs. 2(i), 2(j), and 3(g). The disorder
models we employ include steps ranging from 10 to 600 atoms
in length, and we allow the position of the top interface z,(y)
to deviate from its average value by a standard deviation of 1
to 2 atoms. (See Appendix B for further details.) Other model
parameters, including the positions of the left and right dots,
the electric field, and the orbital excitation energy, are also
chosen randomly, within a range of values consistent with our
experiments. After identifying promising configurations, we
fine tune the model parameters by hand to more closely match
the experimental energy dispersions. For simplicity, we do not
include an overall miscut.

Disorder profiles that approximately replicate the nor-
mal, hot-spot, and sweet-spot behaviors are shown in
Figs. 2(i), 2(j), and 3(g). We allow for different disorder pro-
files in each of the simulations because the different tunings
used in the experiments cause the dots to be exposed to dif-
ferent portions of the interface [47]. The resulting theoretical
energy dispersions are shown in Figs. 2(e), 2(f), and 3(c), di-
rectly below their experimental counterparts. Corresponding
tight-binding wave functions are also shown in the figures,
and we note that a significant amount of disorder is needed
within the quantum dot to suppress the valley splittings to the
levels observed in experiments; for comparison, disorder-free
interfaces yield valley splittings >100 GHz [48].

The hot spots and sweet spots reported here reflect the oc-
casional occurrence of localized changes in typically smooth
dispersions observed in both experiments and simulations.
By analyzing the simulation results, we can gain intuition
into the origins of such exotic effects. We have found that a
comparison of the centers of mass (COM) (y) between the
ground and excited valley states can be an effective indicator
for unusual behavior. For example, Fig. 2(g) shows a typical
COM response for a “normal” (i.e., smooth) energy dispersion
as a function of detuning. Here the COM of both eigenstates
move smoothly and in tandem, displaying no distinctive fea-
tures. This can be understood from Fig. 2(i), where we see

that the wave function is centered at a location where it is not
pressed against a step edge, resulting in no sudden changes as
the detuning is varied.

On the other hand, the hot spot in Fig. 2(f) has a very
different COM response, as shown in Fig. 2(h). Here the
two eigenstates are spatially well separated (a valley-orbit
coupling effect) and their positions are rapidly changing,
which exposes them to distinct, local disorder potentials.
The valley composition of the eigenstates also varies rapidly,
yielding sudden changes in the qubit frequency, as shown
in Fig. 2(f). An unexpected consequence of these effects is
that for detunings around & ~ 225 ueV the excited state |R;)
moves in opposition to the electric field, displaying a striking
example of valley-orbit coupling.

To explain the sweet-spot behavior in Fig. 3, we interpret
the simulation results as follows. Although the disorder profile
of Fig. 3(g) is jagged and rapidly varying, the COM of the
qubit states shown in Fig. 3(d) are closely spaced and move in
tandem near the sweet spot. Here we plot the relative COM,
defined as A(y) = (y)1 — (¥)o. Away from the sweet spot, the
eigenstates move more independently. Moreover, the valley
splitting parameter A g, which dominates the qubit frequency
in the far-detuned regime ¢ > 0, also exhibits a minimum at
the sweet spot (see Appendix B for details on extracting Ag);
when combined with the slowly increasing ‘“background”
qubit frequency [e.g., Fig. 2(c)], we obtain the relatively flat
dispersion shown in Fig. 3(c).

IV. SUMMARY AND CONCLUSIONS

In this article we have reported hot spots and sweet
spots that are not anticipated by the usual models describing
quantum-dot qubits. We attributed these features to atomic-
scale disorder at the quantum-well interface, and showed
that they can directly affect the dephasing of a quantum-dot
hybrid qubit. To clarify the physics, we performed tight-
binding simulations of a double dot, taking into account both
conduction-band valleys and the valley-orbit coupling caused
by step disorder. By introducing random disorder profiles, we
were able to generate dispersion features consistent with the
experiments. In both theory and experiment, in most cases,
we observed no distinct features in the dispersion. However,
special disorder profiles were found to induce hot spots (or
sweet spots), where the qubit is particularly susceptible to
(or protected from) electrical fluctuations of the detuning
parameter. Since atomic-scale disorder is ubiquitous in Si
heterostructures, these results suggest that Si qubit energy
dispersions can be modified by electrostatically tuning the
dots so they are exposed to desirable disorder profiles. In the
future, it will be interesting to see whether sweet spots can
reliably be achieved through such methods.
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APPENDIX A: EXPERIMENTAL METHODS

Measuring the energy dispersion in Fig. I(c). Following
Ref. [43], we first initialize the qubit into its ground state
|0) at the north pole of the Bloch sphere. We then apply
the three-step pulse sequence, illustrated in Fig. 1(b), which
allows us to measure the qubit frequency over a wide range
of detunings. A microwave voltage pulse corresponding to an
X5 > rotation is applied to the gate labeled R in Fig. 1(a) in
order to rotate the qubit onto the equator of the Bloch sphere.
The dc bias voltage on gate R is then adiabatically adjusted to
give the desired detuning ¢. Free induction ensues for a time
period fee, after which the detuning is adiabatically returned
to its initial value, and a second X, rotation is performed.
The qubit is then measured to determine the probability P; of
being in the excited state |1) at the south pole of the Bloch
sphere, and the experiment is repeated as a function of #se, to
obtain Ramsey fringes. By Fourier transforming these data,
we determine the qubit frequency fp corresponding to &.
The experiment is then repeated, keeping all parameters fixed
except ¢, to obtain a map of the energy dispersion.

Measuring the energy dispersions in Fig. 2. Here we follow
the same procedure as Fig. 1, replacing the three-step pulse
with a conventional Ramsey pulse sequence, as illustrated in
the second line of Fig. 1(b). To determine the Ramsey decay
rates I';, shown in Figs. 2(a) and 2(b), we fit the Ramsey
fringes to an exponentially decaying sinusoid function [43].
The error bars in Figs. 2(a)-2(d) were obtained from the
covariance matrix determined during this procedure.

Measuring the energy dispersions in Fig. 3. In Fig. 3(a) we
use the Rabi pulse sequence illustrated in Fig. 1(b), applied to
gate L. In this case, the frequency of the oscillations depends
on the microwave power, rather than the qubit energy splitting.
The Rabi decay rate reported in the main text is obtained
by fitting the Rabi oscillations to an exponentially decaying
sinusoid at the ¢ value corresponding to the slowest Rabi
oscillations.

In Fig. 3(b) we apply the Larmor pulse sequence illustrated
in Fig. 1(b) and described in Ref. [44] to gate L. In this case,
after initialization, the qubit is abruptly pulsed to a desired
value of ¢, putting it in a superposition of qubit eigenstates.

Free induction ensues for a time period .., after which the
detuning is abruptly pulsed back to its initial value where the
qubit is measured. Repeating the experiment as a function of
tiee yields Larmor fringes, which are Fourier transformed,
analogous to the Ramsey experiment, to obtain the energy
dispersion.

Numerical integration of Eq. (2). The red dots in Figs. 2(c)
and 2(d) were obtained by numerically integrating the data in
Figs. 2(a) and 2(b). If we use the indices i (j) to label the
ith (jth) data points for I'; and f(, and note that the distance
between detuning steps is a constant Aeg, then the numerical
integral can be expressed as

foi = foo+ (2mo.Ae) Y T3 senlfo; — fo.i-1l.
=0
(A1)

where i > 0, and fQ is the integrated estimate for f. Note
that the function sgn[ fp ; — fo,;—1] accounts for the absolute
value sign in Eq. (2), and is evaluated using experimental
data. In Figs. 2(c) and 2(d) we use the same value of o, =
4.39 ueV, which is also consistent with Ref. [43].

APPENDIX B: TIGHT-BINDING MODEL

For a strained Si quantum well, the two low-lying
conduction band valleys are centered at positions ko =
40.82(27/a)z in the Brillouin zone, where a = 0.543 nm
is the length of the (unstrained) Si cubic unit cell, and 2
is the growth direction, which we assume here to be ori-
ented along (001), for simplicity. The minimal tight-binding
model captures these valley positions as well as their longi-
tudinal and transverse effective masses (m; = 0.916 m, and
m; = 0.191 my, respectively) by introducing nearest- and
next-nearest-neighbor hopping parameters in the z direction
[48,49] (u, = 0.68eV and v, = 0.61 eV, respectively), and a
separate nearest-neighbor hopping parameter in the x-y plane
[17,50,51] (uy, = —10.91¢eV). The double-dot confinement
potential is three dimensional (3D). However, an interfacial
step is a 2D feature that generates valley-orbit coupling
in the x-y plane [13]. If we define X as the direction parallel
to the step, and further orient the double-dot axis along ¥, then
the essential physics of our problem is all contained within
the y-z plane, and inclusion of the third dimension (X) only
provides quantitative corrections, but no new physics. Our
minimal model can therefore be reduced to the y-z plane.

The hopping parameters, described above, account for the
kinetic energy Hk of an electron in a strained-Si quantum
well. The electronic potential energy is described via on-site
(i.e., diagonal) terms, involving several contributions. (1) We
include a uniform on-site energy of 23.23 eV, which ensures a
ground-state energy of zero for an infinite-size system with
no other confining potentials or fields. (2) We introduce a
quantum well with a barrier of height Vow = 0.15eV, as
appropriate when Si is sandwiched between strain-relaxed
Sip7Gep s [52]. If we define the position of the bottom inter-
face of the well as z;, = 0, and assume the top well interface
z;(y) is a function of position (i.e., the steps), then the barrier
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potential can be written as
How = Vow{0(zp — 2) +0[z — z:()1}, (B1)

where 6(z) is the Heaviside step function. (3) We include a
vertical electric field F, as consistent with experiments, which
pulls the electron wave function up against the top interface:

Hp = —¢Fz. (B2)

Ideally, this field should be large enough that the electron feels
no confinement effects from the bottom of the quantum well.
(We note that electric fields in the range of F = 1-2MV/m,
which were reported in Figs. 2 and 3, satisfy this criterion.
However, we have also observed good results at higher fields,
of order 6 MV/m.) (4) We model the two dots, centered at
positions y;, and yg, with a biquadratic potential:

Hpp = min [ 1m0’ (y — y. )%, dm0*(y — yr)*].  (B3)
where w represents the orbital excitation frequency of the
individual dots. For simplicity, we assume both dots have the

same w. (5) We include the effects of a detuning parameter &
via an in-plane electric field:

e
Ho=———y. (B4)
T 20m—y)
The full Hamiltonian of the system is then written as
H = Hg + How + Hp + Hpp + H,. (BS)

Fitting Ay, A,, and Ay in simulations. In Fig. 1 the
Hamiltonian parameters A, A,, and A were determined by

fitting the experimental data in Fig. 1(c) to Eq. (1), assuming
the fitting parameters to be independent of ¢. This is a good
approximation for “normal” dispersion relations, which are
smooth, with no distinct features. The approximation is not
good for sweet spots or hot spots. Below we describe our
method for extracting A, A, and Ay as a function of ¢ from
the simulation results, as shown in Figs. 3(e) and 3(f).

We consider only the far-detuned regime ¢ > 0, where the
two low-energy eigenstates have charge configuration (0,1).
The key is to determine the valley splitting A g, independently
of A; and A;, by making the following approximation: we
replace the double-dot confinement potential Eq. (B3) with
the right-localized single-dot potential,

Hsp = im0 (y — yr)°, (B6)

and repeat the tight-binding simulation, assuming the same
interfacial disorder potential. Repeating this procedure as
a function of ¢ gives Ag(e). Ignoring the left dot in this
way is a good approximation because the tails of the wave
function do not play a significant role in determining the
valley splitting. On the other hand, the tails play an important
role in determining the tunnel couplings A(¢) and A, (e). To
obtain these quantities, we use the following procedure: for a
given ¢ we can use the previously computed value of Ag(¢) in
Eq. (1). We then obtain the characteristic polynomial for the
Hamiltonian and, by using the eigenenergies obtained from
the simulations, we solve for the remaining parameters A (¢e)
and A;(e).
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